

Centre for Sustainable Cropping

Arable Transitions Toolkit

Cathy.Hawes@hutton.ac.u k

Step 1: Goal setting/priorities

The James Hutton Institute

<u>Soil health</u> – Biodiversity – Yield

Management options check list:

Soil health – **<u>Biodiversity</u>** – Yield

Management options check list:

The James Hutton Institute

Soil health – Biodiversity – Yield

Management options check list:

Searchable Resource Library

linked to management options selected by user

	Minimum tillage	Technical	
Technical Not TN553 ISSN 0142 7695 ISBN 1 85482 791 X Decemb	 e Key points to success with minimum tillage are: Minimum tillage is not an easy option, it demands commitment, time and patience. Are the experience of others in your area before starting on minimum tillage. In d more stable structured soils are best suited to minimum tillage. perate one main system to reduce costs but be prepared to be flexible throughout – 	ISSN 0142 7605 - ISBN 1 85462 839 8 - June 2000	582
SIMPLY SUSTAINAB BIODIVERSITY Six Simple Steps to help improve biodiversity on your land	 School of a minimum tillage with ploughing. *ed in this note is based on tensor of a wide range of 	for Crop Prote SL MMARY ^{st-aside} and fallow breaks can ^{sease} pressures may change fi MMARY	JSTA mple Step: performa sustain
	Further advice and ideas ce with minimum tillage 2. This technical note was t of a minimum tillage advisory activity and as	orary Tools Events	
MALE A	Home > Knowledge library > How to use red clover		N.

> Growing red clover for silage and grazing > Case study > Useful links

SIMPLY SUSTAINABLE SOILS

Six Simple Steps for your soil to help improve the performance, health and long-term sustainability of your land

Find out how to use red clover to benefit your system. See our tips on g grasses.

Step 2: Predict sustainability impact

The James Hutton Institute

Checklist of options linked to DEXi model

- Implement on farm
- Monitor using same indicator protocols
- CSC dashboard: analysis of impact on indicators over time costs, benefits and risks

The lames

Hutton Institute

Processes

- Minimising inputs
- Optimising resource use efficiency
- Reducing losses
- Outputs
 - Biodiversity gains
 - Soil quality
 - Yield

Minimising inputs: crop protection

Engineered solutions

Biofortification for crop resilience:

Preliminary data indicate less Septoria infection in winter wheat compared with standard fungicide treatment.

Contact: Andrew Christie

Disease forecasting: Blight sprays down by 1 to 4 a year using the Hutton Criteria and "One Class" model to predict risk.

Contact: Alison Lees

Minimising inputs: crop protection

Biodiversity-based solutions

Diverse field margins: provide habitat for insect predators and floral resources adult forms of Dipteran and parasitoid natural enemies.

Weed biodiversity: supports diverse foodwebs, regulating pest populations through competition with non-pest herbivores and predation by natural enemies.

Contact: Cathy Hawes

Contact: Cathy Hawes

Minimising inputs: crop protection

Biodiversity-based solutions

Soil biodiversity: organic matter & reduced disturbance generate diverse microbial communities with pest suppressive properties (antagonistic with soil borne pathogens). **Crop diversity**: canopy heterogeneity in mixed varieties/species of crop reduces apparency to pests and disease, minimising population spread through fields.

Contact: Maddy Giles, Jennie Brierley

Contact: Ali Karley, Adrian Newton

Minimising inputs: fertiliser

Soil Nitrogen Supply used to calculate N input requirements; timing of application targeted for max growth periods. Results in ca. 40% reduction in mineral N input.

Biological Nitrogen Fixation by Faba bean and under-sown clover can reach > 200 kg ha⁻¹ yr⁻¹ leaving up to 50 kg ha⁻¹ yr⁻¹ residual N in soil post-harvest.

Contact: Andrew Christie

Contact: Pete lannetta, Euan James

Optimising efficiency

Reduced soil disturbance and diverse carbon inputs (weeds, cover crops, crop residue and compost):

Improved soil structure for better crop rooting and nutrient/water uptake efficiency: pore diversity, aggregate stability and water holding capacity are increased, bulk density is lower.

Contact: Tracy Valentine

Increased microbial biomass, mycorrhizal fungi and macroinvertebrate abundance resulting in faster rates of decomposition and nutrient availability.

Contact: Tim George, Cathy Hawes

Minimising losses: in-field

Nitrogen losses from arable systems: ~280 kg N ha⁻¹ yr⁻¹, 50% from erosion, runoff and GHG emissions

- Organic matter inputs + reduced tillage improve soil structure, reducing erosion
- Tied-ridging increased water infiltration, reducing run-off
- Cover crops retain nutrients over-winter, reducing leaching
- Plant diversity better resource use efficiency, reducing GHG emissions and leaching

Minimising losses: field boundaries

Multi-functional margins take up leached nutrients and minimise GHG emissions. The James **Hutton**

Institute

Contact: Tim George, Tim Daniel, Cathy Hawes

"Magic margins" developed by farm team win RSPB Nature of Scotland Innovation Award.

Contact: Euan Caldwell

Engineered riparian buffers to slow movement of water from fields into natural watercourses, using coppiced willow/alder to take up excess nutrients; NBS-AIMS (D2) Contact: Marc Stutter, Mark Wilkinson, Ken

Outputs: yield

- Yields comparable to national averages (Squire et al. submitted)
- 1st rotation 1 t/ha yield penalty in winter wheat; no significant effect on other crops (Hawes et al. 2018, 2019)
 - 2nd rotation analysis to follow 2023
 - Modelling work with Jagadeesh and Mohamed
 - Differences in varietal responses to management
 - Deeper rooting cereal varieties perform better in integrated system (no-till) in extreme years (Newton et al. 2021)
 - Variation in BNF by faba bean varieties (Maluk et al. 2022)
 - Nutritional variation between potato cultivars, but no treatment effects (Frietag et al. 2016)

Outputs: biodiversity

- More (beneficial) dicot weeds in soil seedbank
- No overall effect of cropping system on grass weed seedbank, but more following wheat and bean crops

Knock-on benefits to pollinators and other beneficial invertebrates

Species richness in weed seedbank

Drone/phone imaging for automated diversity assessment

_2014 by C 5.05 3.28 2.81 2.36 1.18

- More soil organic matter
- Positive correlation with litter decomposition rates
- Enhanced biological activity earthworms, mycorrhizae, pest suppression
- Aggregate stability, pore size diversity and bulk density improves

Step 5: whole-systems assessment

- Data entry form for farmers/consultants
- Feed into automated summary stats/ farm report
- Sustainability assessment via DEXi-CSC
- 97 input variables;
 332 aggregate
 variables
- Compares overall sustainability and components across cropping systems

Contact <u>Cathy.Hawes@hutton.ac.uk</u> for more information

The CSC is funded by the Scottish Government's Rural and Environment Science and Analytical Services Division. Thanks to Hutton Farm Staff, ES and CMS science groups for supporting the platform research activities.

